Tutaj zebraliśmy wszystkie informacje dotyczące modelowania molekularnego, oprogramowania, zagadnień, sposobu rozwiązywania problemów - czyli wszystko to co może się przydać każdemu chemikowi, farmaceucie, biologowi czy pasjonatowi.
Mając najprostszą cząsteczkę dwuatomową wiemy, że istnieje pewna optymalna odległość między atomami gdzie energia układu jest najmniejsza. Odległość tą nazywamy długością wiązania. Możemy ją obliczyć poprzez obliczanie energii dla kolejnych odległości między atomami. W ten sposób możemy sporządzić wykres zależności energii od odległości między atomami. W takim przypadku uzyskaną krzywą nazywamy krzywą energii potencjalnej. Minimum energii odpowiada geometrii, w której cząsteczka występuje w stanie stacjonarnym, to znaczy w badanym medium ilość cząsteczek o danej geometrii jest największa.
Jednym z podstawowych umiejętności podczas interpretacji obliczeń teoretycznych jest przeliczanie wartości energii na różne jednostki. Obliczenia wykonywane na przykład programem Gaussian zwracają wartość energii w Hartree.
W modelowaniu molekularnym spotykamy różne formaty zapisu struktury związków, najpopularniejszymi formatami są układ kartezjański x,y,z, z-macierz, .pdb, czy .cif. Prawda jest taka, że istnieje cały szereg formatów zapisu, medot konwersji, rodzaju przydatności czy oprogramowania.
Modelowanie Komputerowe
Modelowanie molekularne, zwane inaczej chemią obliczeniową, ma zastosowanie zarówno w chemii, biochemii, inżynierii materiałowej jak i w nanotechnologii. Rozwój komputerów oraz programów sprawił, że w ostatnich czasach stało się ono dostępne dla wszystkich, a obliczenia chemiczne można już przeprowadzać na komputerze osobistym. Koszt oraz czas badań teoretycznych jest niejednokrotnie o wiele mniejszy niż wstępne badania praktyczne a uzyskane wyniki coraz bardziej zbliżają się do wyników eksperymentalnych. Korzystając z dobrodziejstw chemii teoretycznej możemy już dziś z bardzo dobrymi rezultatami przewidzieć właściwości fizyczne i chemiczne, modelować reakcje oraz stany przejściowe, symulować widma spektroskopowe, czy też badać układy bardziej skomplikowane, jakim są centra aktywne enzymów. Możemy także projektować leki oraz nowe materiały. Modelowanie komputerowe często nie może dać jednoznacznej odpowiedzi na zadawane pytania, ale w znaczny sposób pomaga zrozumieć oraz rozwiązać problemy. Wszechstronnie wykształcony chemik powinien umieć korzystać z najnowszych dobrodziejstw, jakim niewątpliwie jest wsparcie badań eksperymentalnych obliczeniami.
Elektryczny moment dipolowy jest wektorową wielkością fizyczną, która opisuje dipol. Dipol jest układem ładunków elektrycznych o tej samej wartości lecz posiadających przeciwny znak ... więcej w artykule Pawła Grabowskiego.
Strona 8 z 23