Modelowanie molekularne to technika obliczeniowa, która wykorzystuje zasady fizyki i chemii do symulowania zachowań cząsteczek i interakcji między nimi. Modelowanie molekularne umożliwia przewidywania i tłumaczenie obserwowanych zjawisk. Jest ono także ważnym narzędziem w dziedzinie chemii, biologii, farmakologii, ochrony środowiska, oraz innych nauk przyrodniczych.
Portal molnet.eu od samego początku 2008 prezentował informacje przydatne w tej dziedzinie nauki. Robiliśmy także praktyczne szkolenia molekularne, wydawaliśmy książki i inne materiały. Obecnie materiały po przebudowie można znaleźć jako fragmenty dokumentacji praktycznych szkół, podzieliliśmy także na oprogramowanie:
Scigress - profesjonalny pakiet do obliczeń molekularnych, w którym prowadziliśmy jedną z Praktycznych Szkół Modelowania
Dodatkowo umieliliśmy:
Dla osób lubiących klasyczne materiały nie długo udostępnimy książki bez opłat.
Wykorzystanie sztucznej inteligencji (AI) w analizie danych naukowych przynosi wiele korzyści. Oto kilka powodów, dlaczego warto używać AI w analizie danych naukowych:
W rezultacie, wykorzystanie sztucznej inteligencji w analizie danych naukowych usprawnienia proces badawczy.
Komputer kwantowy to rodzaj komputera, który wykorzystuje zasady mechaniki kwantowej do przetwarzania informacji. W przeciwieństwie do klasycznych komputerów, które używają bitów jako podstawowej jednostki informacji (0 lub 1), komputery kwantowe korzystają z kubity, które oprócz wartości 0 lub 1 posiadają pełny zakres stanów pośrednich. Kubit tym samym staje się układem zdolnym do przechowywania oraz przenoszenia znacznie większej liczby informacji niż bit, dzięki czemu jego wydajność jest wielokrotnie wyższa.
Komputery kwantowe mają potencjał do rozwiązywania problemów, które są trudne lub niemożliwe do rozwiązania przez tradycyjne komputery. Przykładowe zastosowania obejmują symulacje złożonych systemów kwantowych, optymalizację, kryptografię kwantową i badania chemiczne. Obecnie komputery kwantowe są w fazie intensywnego rozwoju, a wiele firm i instytucji badawczych pracuje nad ich udoskonaleniem.
Pomimo postępów, komputery kwantowe wciąż stoją przed wyzwaniami technicznymi, takimi jak utrzymanie stabilności kubitów i redukcja błędów kwantowych. Wraz z dalszym rozwojem technologii kwantowych, można spodziewać się coraz większej liczby zastosowań komputerów kwantowych w przyszłości.
Kubity możemy fizycznie realizować poprzez: foton, stan koherenty światła, elektrony, jądra atomowe, obojętny atom, pułapki jonowe, Tunelowanie Josephsona, Pojedynczo naładowana para kropek kwantowy, kropki kwantowe, kubity wibracyjne, porządek topologiczny, półprzewodnik dwuwymiarowy. Czyli jak widać duże są możliwości.